Retrograde Gbb signaling through the Bmp type 2 receptor wishful thinking regulates systemic FMRFa expression in Drosophila.

نویسندگان

  • Guillermo Marqués
  • Theodore E Haerry
  • M Lisa Crotty
  • Mingshan Xue
  • Bing Zhang
  • Michael B O'Connor
چکیده

Amidated neuropeptides of the FMRFamide class regulate numerous physiological processes including synaptic efficacy at the Drosophila neuromuscular junction (NMJ). We demonstrate here that mutations in wishful thinking (wit) a gene encoding a Drosophila Bmp type 2 receptor that is required for proper neurotransmitter release at the neuromuscular junction, also eliminates expression of FMRFa in that subset of neuroendocrine cells (Tv neurons) which provide the systemic supply of FMRFa peptides. We show that Gbb, a Bmp ligand expressed in the neurohemal organ provides a retrograde signal that helps specify the peptidergic phenotype of the Tv neurons. Finally, we show that supplying FMRFa in neurosecretory cells partially rescues the wit lethal phenotype without rescuing the primary morphological or electrophysiological defects of wit mutants. We propose that Wit and Gbb globally regulate NMJ function by controlling both the growth and transmitter release properties of the synapse as well as the expression of systemic modulators of NMJ synaptic activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crimpy inhibits the BMP homolog Gbb in motoneurons to enable proper growth control at the Drosophila neuromuscular junction.

The BMP pathway is essential for scaling of the presynaptic motoneuron arbor to the postsynaptic muscle cell at the Drosophila neuromuscular junction (NMJ). Genetic analyses indicate that the muscle is the BMP-sending cell and the motoneuron is the BMP-receiving cell. Nevertheless, it is unclear how this directionality is established as Glass bottom boat (Gbb), the known BMP ligand, is active i...

متن کامل

The BMP Homolog Gbb Provides a Retrograde Signal that Regulates Synaptic Growth at the Drosophila Neuromuscular Junction

We show that the BMP ortholog Gbb can signal by a retrograde mechanism to regulate synapse growth of the Drosophila neuromuscular junction (NMJ). gbb mutants have a reduced NMJ synapse size, decreased neurotransmitter release, and aberrant presynaptic ultrastructure. These defects are similar to those we observe in mutants of BMP receptors and Smad transcription factors. However, whereas these ...

متن کامل

Integration of a Retrograde Signal during Synapse Formation by Glia-Secreted TGF-β Ligand

Glial cells are crucial regulators of synapse formation, elimination, and plasticity [1, 2]. In vitro studies have begun to identify glial-derived synaptogenic factors [1], but neuron-glia signaling events during synapse formation in vivo remain poorly defined. The coordinated development of pre- and postsynaptic compartments at the Drosophila neuromuscular junction (NMJ) depends on a muscle-se...

متن کامل

Alternative cleavage of the bone morphogenetic protein (BMP), Gbb, produces ligands with distinct developmental functions and receptor preferences.

The family of TGF-β and bone morphogenetic protein (BMP) signaling proteins has numerous developmental and physiological roles. They are made as proprotein dimers and then cleaved by proprotein convertases to release the C-terminal domain as an active ligand dimer. Multiple proteolytic processing sites in Glass bottom boat (Gbb), the Drosophila BMP7 ortholog, can produce distinct ligand forms. ...

متن کامل

Neuronal phenotype in the mature nervous system is maintained by persistent retrograde bone morphogenetic protein signaling.

The terminal differentiation of many developing neurons occurs after they innervate their target cells and is triggered by secreted target-derived signals that are transduced by presynaptic cognate receptors. Such retrograde signaling induces the expression of genes that are often distinctive markers of neuronal phenotype and function. However, whether long-term maintenance of neuronal phenotyp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 130 22  شماره 

صفحات  -

تاریخ انتشار 2003